272 research outputs found

    The search for black hole binaries using a genetic algorithm

    Full text link
    In this work we use genetic algorithm to search for the gravitational wave signal from the inspiralling massive Black Hole binaries in the simulated LISA data. We consider a single signal in the Gaussian instrumental noise. This is a first step in preparation for analysis of the third round of the mock LISA data challenge. We have extended a genetic algorithm utilizing the properties of the signal and the detector response function. The performance of this method is comparable, if not better, to already existing algorithms.Comment: 11 pages, 4 figures, proceeding for GWDAW13 (Puerto Rico

    Fundamental physics and cosmology with LISA

    No full text
    In this article we give a brief review of the fundamental physics that can be done with the future space-based gravitational wave detector LISA. This includes detection of gravitational wave bursts coming from cosmic strings, measuring a stochastic gravitational wave background, mapping spacetime around massive compact objects in galactic nuclei with extreme-mass-ratio inspirals and testing the predictions of General Relativity for the strong dynamical fields of inspiralling binaries. We give particular attention to new results which show the capability of LISA to constrain cosmological parameters using observations of coalescing massive Black Hole binaries

    LISA Sensitivity and SNR Calculations

    Get PDF
    This Technical Note (LISA reference LISA-LCST-SGS-TN-001) describes the computation of the noise power spectral density, the sensitivity curve and the signal-to-noise ratio for LISA (Laser Interferometer Antenna). It is an applicable document for ESA (European Space Agency) and the reference for the LISA Science Requirement Document

    Resolving multiple supermassive black hole binaries with pulsar timing arrays II: genetic algorithm implementation

    No full text
    Pulsar timing arrays (PTAs) might detect gravitational waves (GWs) from massive black hole (MBH) binaries within this decade. The signal is expected to be an incoherent superposition of several nearly-monochromatic waves of different strength. The brightest sources might be individually resolved, and the overall deconvolved, at least partially, in its individual components. In this paper we extend the maximum-likelihood based method developed in Babak & Sesana 2012, to search for individual MBH binaries in PTA data. We model the signal as a collection of circular monochromatic binaries, each characterized by three free parameters: two angles defining the sky location, and the frequency. We marginalize over all other source parameters and we apply an efficient multi-search genetic algorithm to maximize the likelihood function and look for sources in synthetic datasets. On datasets characterized by white Gaussian noise plus few injected sources with signal-to-noise ratio (SNR) in the range 10-60, our search algorithm performs well, recovering all the injections with no false positives. Individual source SNRs are estimated within few % of the injected values, sky locations are recovered within few degrees, and frequencies are determined with sub-Fourier bin precision

    Space-based Gravitational Wave Observatories

    Get PDF
    In this article, which will appear as a chapter in the Handbook of Gravitational Wave Astronomy, we will describe the detection of gravitational waves with space-based interferometric gravitational wave observatories. We will provide an overview of the key technologies underlying their operation, illustrated using the specific example of the Laser Interferometer Space Antenna (LISA). We will then give an overview of data analysis strategies for space-based detectors, including a description of time-delay interferometry, which is required to suppress laser frequency noise to the necessary level. We will describe the main sources of gravitational waves in the millihertz frequency range targeted by space-based detectors and then discuss some of the key science investigations that these observations will facilitate. Once again, quantitative statements given here will make reference to the capabilities of LISA, as that is the best studied mission concept. Finally, we will describe some of the proposals for even more sensitive space-based detectors that could be launched further in the future

    The eLISA/NGO Data Processing Centre

    Get PDF
    International audienceData analysis for the eLISA/NGO mission is going to be performed in several steps. The telemetry is unpacked and checked at ESA's Science Operations Centre (SOC). The instrument teams are providing the necessary calibration files for the SOC to process the Level 1 data. The next steps, the source identification, parameter extraction and construction of a catalogue of sources is performed at the Data Processing Centre (DPC). This includes determining the physical and astrophysical parameters of the sources and their strain time series. At the end of the processing, the produced Level 2 and Level 3 data are then transferred back to the SOC, which provides the data archive and the interface for the scientific community. The DPC is organised by the member states of the consortium. In this paper we describe a possible outline of the data processing centre, including the tasks to be performed, and the organisational structure

    TDI noises transfer functions for LISA

    Get PDF
    The LISA mission is the future space-based gravitational wave (GW)observatory of the European Space Agency. It is formed by 3 spacecraftexchanging laser beams in order to form multiple real and virtualinterferometers. The data streams to be used in order to extract the largenumber and variety of GW sources are Time-Delay Interferometry (TDI) data. Oneimportant processing to produce these data is the TDI on-ground processingwhich recombines multiple interferometric on-board measurements to removecertain noise sources from the data such as laser frequency noise or spacecraftjitter. The LISA noise budget is therefore expressed at the TDI level in orderto account for the different TDI transfer functions applied for each noisesource and thus estimate their real weight on mission performance. In order toderive a usable form of these transfer functions, a model of the beams, themeasurements, and TDI have been developed, and several approximation have beenmade. A methodology for such a derivation has been established, as well asverification procedures. It results in a set of transfer functions, which arenow used by the LISA project, in particular in its performance model. Usingthese transfer functions, realistic noise curves for various instrumentalconfigurations are provided to data analysis algorithms and used for instrumentdesign.<br

    Facing the LISA Data Analysis Challenge

    Get PDF
    By being the first observatory to survey the source rich low frequency region of the gravitational wave spectrum, the Laser Interferometer Space Antenna (LISA) will revolutionize our understanding of the Cosmos. For the first time we will be able to detect the gravitational radiation from millions of galactic binaries, the coalescence of two massive black holes, and the inspirals of compact objects into massive black holes. The signals from multiple sources in each class, and possibly others as well, will be simultaneously present in the data. To achieve the enormous scientific return possible with LISA, sophisticated data analysis techniques must be developed which can mine the complex data in an effort to isolate and characterize individual signals. This proceedings paper very briefly summarizes the challenges associated with analyzing the LISA data, the current state of affairs, and the necessary next steps to move forward in addressing the imminent challenges.Comment: 4 pages, no figures, Proceedings paper for the TeV Particle Astrophysics II conference held Aug 28-31 at the Univ. of Wisconsi

    Analogies between optical propagation and heat diffusion: applications to microcavities, gratings and cloaks

    No full text
    International audienceA new analogy between optical propagation and heat diffusion in heterogeneous anisotropic media has beenproposed recently [S. Guenneau, C. Amra, and D. Veynante, Optics Express Vol. 20, 8207-8218 (2012)]. A detailedderivation of this unconventional correspondence is presented and developed. In time harmonic regime, all thermalparameters are related to optical ones in artificial metallic media, thus making possible to use numerical codesdeveloped for optics. Then the optical admittance formalism is extended to heat conduction in multilayeredstructures. The concepts of planar micro-cavities, diffraction gratings, and planar transformation optics for heatconduction are addressed. Results and limitations of the analogy are emphasized

    The Challenges in Gravitational Wave Astronomy for Space-Based Detectors

    Full text link
    The Gravitational Wave (GW) universe contains a wealth of sources which, with the proper treatment, will open up the universe as never before. By observing massive black hole binaries to high redshifts, we should begin to explore the formation process of seed black holes and track galactic evolution to the present day. Observations of extreme mass ratio inspirals will allow us to explore galactic centers in the local universe, as well as providing tests of General Relativity and constraining the value of Hubble's constant. The detection of compact binaries in our own galaxy may allow us to model stellar evolution in the Milky Way. Finally, the detection of cosmic (super)strings and a stochastic background would help us to constrain cosmological models. However, all of this depends on our ability to not only resolve sources and carry out parameter estimation, but also on our ability to define an optimal data analysis strategy. In this presentation, I will examine the challenges that lie ahead in GW astronomy for the ESA L3 Cosmic Vision mission, eLISA.Comment: 12 pages. Plenary presentation to appear in the Proceedings of the Sant Cugat Forum on Astrophysics, Sant Cugat, April 22-25, 201
    • …
    corecore